Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Biomol Struct Dyn ; : 1-16, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-2243910

ABSTRACT

A mini survey was employed in the search of herbs and spices which people believe could prevent them from contracting COVID-19. Phytochemicals which have been earlier implicated for the bioactivity of the afore-mentioned herbs and spices were identified through literature search. The phytochemicals were then subjected to pharmacore modelling, molecular docking and molecular dynamics simulation in order to identify phytochemicals that could serve as inhibitors of 3-Chymotryprin-like protease and RNA dependent-RNA polymerase of SARS-CoV-2. The drug-likeness and toxicity profile of the phytochemicals were afterwards predicted via ADMET studies. The mini survey showed ginger, garlic, bitter cola, as the lead-herbs which could find application in anti- COVID-19 therapy. Literature search revealed 27 phytochemicals were implicated for bioactivity of these herbs. Of these 27 phytoconstituents that were docked with 3-chymotrypsin-like protease and RNA dependent-RNA polymerase, the constituents of bitter cola had lower docking scores than other phytochemicals. MD simulation results showed that Garcinia biflavonoid I displayed less comformational changes and the better binding free energy. Also, the garcinia biflavonoids had relatively safe ADMET predictions. Hence, Garcinia biflavonoids and some other constituents of bitter cola could be further modified so as to obtain safe pharmaceutical intervention for the COVID-19 challenge.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-10, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2134145

ABSTRACT

Malaria control efforts have been hampered due to the emergence of resistant malaria parasite strains and the coinciding events of Covid-19. The quest for more effective and safe treatment alternatives is driving a slew of new studies that must be accelerated if malaria can be overcome. Due to its reported antimalarial activity, we studied the effects of extract and fractions of Phyllanthus nivosus leaf on Plasmodium lactate dehydrogenase (pLDH) activity using an in vitro assay. This was followed by an anti-plasmodial study using Plasmodium berghei-infected mice and an in silico identification of the plant's phytochemicals with possible pLDH-inhibitory activity. The activity of pLDH was significantly reduced in the presence of ethanol extract and various solvent fractions of Phyllanthus nivosus leaf, with the ethyl acetate fraction having the best inhibitory activity, which was comparable to that of the standard drug (chloroquine). The ethyl acetate fraction at 100 and 200 mg/Kg also suppressed the parasitaemia of Plasmodium berghei-infected mice by 76 and 80% respectively. Among the 53 compounds docked against pLDH, (-)-alpha-Cadinol, (+)-alpha-phellandrene, and spathulenol, all terpenes from the ethyl acetate fraction of P. nivosus leaf extract, demonstrated docking scores comparable to that of chloroquine. The three chemicals, like chloroquine, displayed important molecular interactions with the amino acid residues of the enzyme's NADH-binding site. According to the in silico ADMET study, the three terpenes have suitable drug-like abilities, pharmacokinetic features, and safety profiles. Hence, they could be considered for further development as antimalarial drugs.Communicated by Ramaswamy H. Sarma.

3.
Front Med (Lausanne) ; 9: 907583, 2022.
Article in English | MEDLINE | ID: covidwho-2114564

ABSTRACT

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from -7.84 to -7.15 kcal/mol compared with the -6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

4.
J Biomol Struct Dyn ; : 1-9, 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2097031

ABSTRACT

The development of resistance to conventional antimalarial therapies, along with the unfavorable impact of the COVID-19 pandemic on the global malaria fight, necessitates a greater focus on the search for more effective antimalarial drugs. Targeting a specific enzyme of the malaria parasite to alter its metabolic pathways is a reliable technique for finding antimalarial drug candidates. In this study, we used an in silico technique to test four novel imidazoles and an oxazole derivative for inhibitory potential against Plasmodium lactate dehydrogenase (pLDH), a unique glycolytic enzyme necessary for parasite survival and energy production. The promising imidazole compounds and the oxazole derivative were then tested for anti-plasmodial efficacy in Plasmodium berghei-infected mice. With a binding energy of -6.593 kcal/mol, IM-3 had the best docking score against pLDH, which is close to that of NADH (-6.758 kcal/mol) and greater than that of chloroquine (-3.917 kcal/mol). The test compounds occupied the enzyme's NADH binding site, with IM-3 forming four hydrogen bonds with Thr-101, Pro-246, His-195 and Asn-140. Infected mice treatment with IM-3, IM-4 and OX-1 exhibited significantly reduced parasitemia over a four-day treatment period when compared to the infected untreated animals. At 5, 10 and 20 mg/kg, IM-3 demonstrated the highest anti-plasmodial activity, suppressing parasitemia by 86.13, 97.71 and 94.11%, respectively. PCV levels were restored by IM-3 and IM-4, and the three selected compounds reduced the lipid peroxidation induced by P. berghei infection in mice. Thus, these compounds may be considered for further development as antimalarial medicines.Communicated by Ramaswamy H. Sarma.

5.
Inform Med Unlocked ; 31: 100964, 2022.
Article in English | MEDLINE | ID: covidwho-1936567

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a pandemic cause of Corona Virus Disease (COVID-19), that has claimed numerous human lives across the globe. Main protease being the active protein of SARS-CoV-2 requires urgent mitigating effect against the spread of the virus. The therapeutic roles of the active compounds present in ten typical African medicinal plants were investigated in this study. Five active compounds Curcuma longa (Curcumin and Bisdethoxy curcumin), Garcinia kola (kolaviron), Zingiber officinale (Gingerol) and Vernonia amygdalina (Artemisinin) were selected and docked against Main protease through receptor grid generation, protein ligand docking, receptor ligand complex pharmacophore and binding free energy. The results obtained revealed Curcumin had the highest binding score of -8.628 kcal/mol while artermisinin presented the least with -4.123 kcal/mol. The outcome of the pharmacokinetic prediction in this study revealed high transport capacity across the gastrointestinal tract and high blood brain barrier permeability for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. The exemption is gingerol with low LD50 value (250 mg/kg), the LD50 of all active compounds ranged from 2000 to 4228 mg/kg. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties exhibited by all compounds portrayed them as non-hepatotoxic, non-cytotoxic, non-mutagenic and non-carcinogenic. The active compounds exhibited drug-likeness features against Main protease of Covid-19.

6.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1918714

ABSTRACT

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from −7.84 to −7.15 kcal/mol compared with the −6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

7.
Data Science for COVID-19 ; : 467-482, 2021.
Article in English | PMC | ID: covidwho-1384782

ABSTRACT

This study aimed to evaluate the pharmacological and toxicological potential of five known antiviral agents and their derivatives through computational modelling. Ritonavir, Remdesivir, Chloroquine, Lopinavir, Dieckol and their derivatives were subjected to molecular docking analysis against five SARS-CoV-2 target proteins. The ADMET properties of the compounds with high affinity for the SARS-CoV-2 target proteins were predicted. Dieckol demonstrated the highest binding affinity for all the SARS-CoV-2 target proteins while lopinavir and ritonavir showed a relatively high binding affinity for 3-chymotrypsin-like protease, main protease and RNA-dependent RNA polymerase. The compounds fulfilled the Lipinski rule, possess moderate water solubility, GI absorption, bioavailability, synthetic accessibility and optimum lipophilicity. Hence, this study proves the therapeutic potential of dieckol, lopinavir and ritonavir.

8.
J Pharmacol Sci ; 147(1): 62-71, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240460

ABSTRACT

Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 - ASP 289 - GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.


Subject(s)
Computational Biology/methods , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Molecular Docking Simulation/methods , SARS-CoV-2/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
9.
Bull Natl Res Cent ; 45(1): 57, 2021.
Article in English | MEDLINE | ID: covidwho-1133616

ABSTRACT

BACKGROUND: The growing number of cases, severity and fatality of the COVID-19 pandemic, coupled with the fact that no cure has been found has made infected individuals especially in Africa, to resort to the consumption of different natural products to alleviate their condition. One of such plant materials that have been consumed to remedy the severity of this viral infection is the oil of Nigella sativa seed commonly called black seed oil. In this study, we extracted and characterized the oil from this seed using gas chromatography coupled to a mass selective detector to identify the component phytochemicals. Site-directed multiligand docking of the identified compounds was performed on SARS-CoV-2 molecular targets- Replicase polyprotein 1a, RNA binding protein of NSP9, ADP ribose phosphatase of NSP3, 3-chymotrypsin-like protease 3CLpro, and RNA-dependent RNA polymerase RDRP, and ACE2-angiotensin-converting enzyme from the Homo sapiens. RESULTS: The binding affinity of caryophyllene oxide was the highest on 3CLpro (- 6.0 kcal/mol), NSP3 (- 6.3 kcal/mol), NSP9 (- 6.3 kcal/mol), and RDRP (- 6.9 kcal/mol) targets, while α-bergamotene gave the best binding affinity on RPIA (5.7 kcal/mol) target. The binding affinity of ß-bisabolene on the ACE2 target (- 8.0 kcal/mol) was almost the same as Remdesivir (- 8.1 kcal/mol). The ADMET properties of these three phytochemicals showed that they are good drug leads for these SARS-CoV-2 receptors. CONCLUSION: The findings from this study strongly indicate that the reported recovery from COVID-19 infection claimed by patients who consumed black seed oil could be linked to the presence of caryophyllene oxide, α-bergamotene, and ß-bisabolene in this natural product.

SELECTION OF CITATIONS
SEARCH DETAIL